Member of **Scansonic** Group

Benefits:

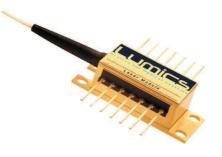
All laser welded

Field proven reliability

Telcordia compliant package

Hermetic sealing

RoHS compliant



LU0760M150

150mW 760nm Laser Module, Single Mode Pump Laser

Preliminary

The single mode fiber pigtailed laser diode module contains an optimized GaAs substrate based quantum well high power laser diode. The extremely stringent reliability requirements are achieved through our patent pending innovative technology. This includes careful design, exactly defined manufacturing and extensive testing. The qualification contains a set of optoelectronic, thermal and mechanical tests. Each laser diode module is individually serialized for traceability and is shipped with a specified set of test data.

Applications:

Frequency doubling

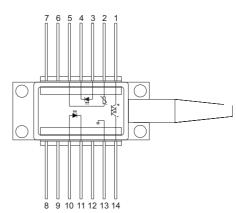
Sensor applications

Features & Functions:

Wavelength 760nm

- ASE noise suppression 30dB
- Up to 150mW c.w. operating power
- Rise time < 2nsec
- Internal TEC temperature stabilisation

Module Drawing (dimensions in mm)


Options:

PM fiber option

Ultra narrow line width 0.04pm (10MHz)

Pin Connections

Pin			Function
1	Cooler (+)	8	nc
2	Thermistor	9	nc
3	PD Anode (+)	10	LD Anode (+)
4	PD Cathode (-)	11	LD Cathode (-)
5	Thermistor	12	nc
6	nc	13	Case ground
7	nc	14	Cooler (-)

We manufacture diode lasers.

Electrical and Optical Characteristics (at 25°C (T_{chip} and T_{case}) and Begin of Life (BOL)):

	Conditions					
Operating power (1)	C.W.	Pop		150		mW
Operating current	C.W.	lop		250		mA
Pulsed operating peak power	< 500ns / duty cycle <5%	Pop		250		mW
Pulsed operating peak current	< 500ns / duty cycle <5%	l _{op}		350		mA
Rise and fall time				2		nsec
Threshold current		I _{th}		50		mA
Forward voltage	at I _{op}	V _{op}		2		V
Peak wavelength λ_{peak}	at P _{op}	λ	759	760	761	nm
Spectral width (FWHM) (2)	at P _{op} , with FBG	Δλ		0.04		pm
Spectral width (FWHM)	at P _{op} , with FBG	Δλ		10		MHz
Optical power stability	at I _{op} , t = 60 sec	P _{op} / t		0.3		%
Polarization extinction ratio (3)	PM fiber version		6	12		dB
Spectral shift with temp.	FBG Temp.	Δ/Τ			0.02	nm/ °C
ASE noise suppression	at Pop, with FBG			30		dB
Monitor responsivity		R	0.04	0.08	2	μA / mW
Monitor dark current			5		40	nA
TEC current	chip 25°C, case 70°C	I _{TEC}		0.9		А
TEC voltage	chip 25°C, case 70°C	V _{TEC}		1.7		V
Thermistor resistance	T=25°C	R _{th}	9.5	10	10.5	kOhm
Thermistor B constant		В	3850	3950	4050	K
Steinhart-Hart-Equation coefficients	C ₁ = 1.1292E-03 / C ₂ = 2.34	11E-04 / C3=	8.7755E-08	3		

Fiber Specifications

Fiber type HI 780 or PM Fiber PM780 Type PANDA

Note:


(1) operating power shows kinks approx. every 10mA - 100mA in defined power range due to single longitudinal laser mode hoping (2) FWHM is valid in the current regime free of mode hoping. Smallest and stable line width over time is only achieved with drift and noise free laser diode driver and temperature controller meaning current drift below 0.1mA and noise band <10 μ A up to 10 MHz as well as internal temperature drift below 0.2°C.

(3) Intensity noise of light from modules with PM fiber after polarisaton increases with lower polarization extinction ratio (example 6 /10/13 dB can result in intensity noise as high as 50/20/5%). The intensity noise is sensitive to varying stress (by mechanical and temperature effects) introduced to the PM fiber.

Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit
Storage temp.	T _{max} -40		85	°C
Operating case temp.	T _{op, case}	-20	70	°C
Operating chip temp.	T _{op, chip}	20	40	°C
Soldering temp. (max. 10sec)			260	°C
LD forward current (c.w.)	I _{op max}		350	mA
LD forward current (Pulse 200ns/F	0.6	А		
LD reverse voltage V _{R, max}			2	V
Monitor forward current	I _{F, PD}		5	mA
Monitor reverse voltage	V _{R, PD}		20	V
TEC current	I _{TEC}		2.5	А
TEC voltage	V _{TEC}		3.2	V
ESD damage (2)			500	V
Fiber pigtail bend radius		25		mm

Example of single mode spectra

(3) A standard human body model (1.5kOhm, 1000pF) is used for ESD thresholds

User Safety

We manufacture diode lasers.